Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.212
Filtrar
1.
Food Res Int ; 186: 114363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729725

RESUMO

This study evaluates the impact of high-intensity ultrasound (HIU) on the physicochemical properties and in-vitro digestibility of Atlantic cod (Gadus morhua). Various ultrasound durations (0-60 min) were applied to assess changes in color attributes, total antioxidant capacity (TAC), total flavonoid content (TFC), total phenolic content (TPC), total protein content, and in-vitro protein digestibility (IVPD). Results indicated HIU maximumly increased TAC, TFC, TPC, and peptide content before digestion by 7.28 % (US60), 3.00 % (US30), 32.43 % (US10), and 18.93 % (US60), respectively. While HIU reduced total protein content, it enhanced IVPD by up to 12.24 % (US30). Color attributes electron microscopy reflected structural changes in the cod samples, suggesting the effectiveness of HIU in altering protein structures. These findings highlight HIU's potential as a non-thermal technique for improving the sensory and nutritional quality of Atlantic cod, offering valuable insights for the seafood processing industry and consumers.


Assuntos
Antioxidantes , Digestão , Manipulação de Alimentos , Gadus morhua , Valor Nutritivo , Alimentos Marinhos , Gadus morhua/metabolismo , Animais , Alimentos Marinhos/análise , Antioxidantes/análise , Antioxidantes/química , Manipulação de Alimentos/métodos , Fenóis/análise , Ondas Ultrassônicas , Flavonoides/análise , Nutrientes/análise , Paladar , Cor
2.
Sci Rep ; 14(1): 10499, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714740

RESUMO

Improving the efficacy of chemotherapy remains a key challenge in cancer treatment, considering the low bioavailability, high cytotoxicity, and undesirable side effects of some clinical drugs. Targeted delivery and sustained release of therapeutic drugs to cancer cells can reduce the whole-body cytotoxicity of the agent and deliver a safe localized treatment to the patient. There is growing interest in herbal drugs, such as curcumin, which is highly noted as a promising anti-tumor drug, considering its wide range of bioactivities and therapeutic properties against various tumors. Conversely, the clinical efficacy of curcumin is limited because of poor oral bioavailability, low water solubility, instability in gastrointestinal fluids, and unsuitable pH stability. Drug-delivery colloid vehicles like liposomes and nanoparticles combined with microbubbles and ultrasound-mediated sustained release are currently being explored as effective delivery modes in such cases. This study aimed to synthesize and study the properties of curcumin liposomes (CLs) and optimize the high-frequency ultrasound release and uptake by a human breast cancer cell line (HCC 1954) through in vitro studies of culture viability and cytotoxicity. CLs were effectively prepared with particles sized at 81 ± 2 nm, demonstrating stability and controlled release of curcumin under ultrasound exposure. In vitro studies using HCC1954 cells, the combination of CLs, ultrasound, and Definity microbubbles significantly improved curcumin's anti-tumor effects, particularly under specific conditions: 15 s of continuous ultrasound at 0.12 W/cm2 power density with 0.6 × 107 microbubbles/mL. Furthermore, the study delved into curcumin liposomes' cytotoxic effects using an Annexin V/PI-based apoptosis assay. The treatment with CLs, particularly in conjunction with ultrasound and microbubbles, amplified cell apoptosis, mainly in the late apoptosis stage, which was attributed to heightened cellular uptake within cancer cells.


Assuntos
Curcumina , Sistemas de Liberação de Medicamentos , Lipossomos , Curcumina/farmacologia , Curcumina/química , Curcumina/administração & dosagem , Humanos , Lipossomos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Microbolhas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Ondas Ultrassônicas , Liberação Controlada de Fármacos , Apoptose/efeitos dos fármacos
3.
Nat Commun ; 15(1): 4017, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740759

RESUMO

Ultrasound-driven bioelectronics could offer a wireless scheme with sustainable power supply; however, current ultrasound implantable systems present critical challenges in biocompatibility and harvesting performance related to lead/lead-free piezoelectric materials and devices. Here, we report a lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation, which integrates two developed lead-free sandwich porous 1-3-type piezoelectric composite elements with enhanced harvesting performance in a flexible printed circuit board. The implant is ultrasonically powered through a portable external dual-frequency transducer and generates programmable biphasic stimulus pulses in clinically relevant frequencies. Furthermore, we demonstrate ultrasound-driven implants for long-term biosafety therapy in deep brain stimulation through an epileptic rodent model. With biocompatibility and improved electrical performance, the lead-free materials and devices presented here could provide a promising platform for developing implantable ultrasonic electronics in the future.


Assuntos
Estimulação Encefálica Profunda , Tecnologia sem Fio , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Animais , Tecnologia sem Fio/instrumentação , Ratos , Eletrodos Implantados , Epilepsia/terapia , Masculino , Próteses e Implantes , Ratos Sprague-Dawley , Transdutores , Desenho de Equipamento , Ondas Ultrassônicas
4.
Artigo em Inglês | MEDLINE | ID: mdl-38691431

RESUMO

In hippocampus, synaptic plasticity and rhythmic oscillations reflect the cytological basis and the intermediate level of cognition, respectively. Transcranial ultrasound stimulation (TUS) has demonstrated the ability to elicit changes in neural response. However, the modulatory effect of TUS on synaptic plasticity and rhythmic oscillations was insufficient in the present studies, which may be attributed to the fact that TUS acts mainly through mechanical forces. To enhance the modulatory effect on synaptic plasticity and rhythmic oscillations, transcranial magneto-acoustic stimulation (TMAS) which induced a coupled electric field together with TUS's ultrasound field was applied. The modulatory effect of TMAS and TUS with a pulse repetition frequency of 100 Hz were compared. TMAS/TUS were performed on C57 mice for 7 days at two different ultrasound intensities (3 W/cm2 and 5 W/cm [Formula: see text]. Behavioral tests, long-term potential (LTP) and local field potentials in vivo were performed to evaluate TUS/TMAS modulatory effect on cognition, synaptic plasticity and rhythmic oscillations. Protein expression based on western blotting were used to investigate the under- lying mechanisms of these beneficial effects. At 5 W/cm2, TMAS-induced LTP were 113.4% compared to the sham group and 110.5% compared to TUS. Moreover, the relative power of high gamma oscillations (50-100Hz) in the TMAS group ( 1.060±0.155 %) was markedly higher than that in the TUS group ( 0.560±0.114 %) and sham group ( 0.570±0.088 %). TMAS significantly enhanced the synchronization of theta and gamma oscillations as well as theta-gamma cross-frequency coupling. Whereas, TUS did not show relative enhancements. TMAS provides enhanced effect for modulating the synaptic plasticity and rhythmic oscillations in hippocampus.


Assuntos
Estimulação Acústica , Hipocampo , Camundongos Endogâmicos C57BL , Estimulação Magnética Transcraniana , Animais , Camundongos , Estimulação Magnética Transcraniana/métodos , Masculino , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Cognição/fisiologia , Potenciação de Longa Duração/fisiologia , Ondas Ultrassônicas , Ritmo Teta/fisiologia
5.
J Vis Exp ; (206)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38709074

RESUMO

Utilizing vegetable oil as a sustainable feedstock, this study presents an innovative approach to ultrasonic-assisted transesterification for biodiesel synthesis. This alkaline-catalyzed procedure harnesses ultrasound as a potent energy input, facilitating the rapid conversion of extra virgin olive oil into biodiesel. In this demonstration, the reaction is run in an ultrasonic bath under ambient conditions for 15 min, requiring a 1:6 molar ratio of extra virgin olive oil to methanol and a minimum amount of KOH as the catalyst. The physiochemical properties of biodiesel are also reported. Emphasizing the remarkable advantages of ultrasonic-assisted transesterification, this method demonstrates notable reductions in reaction and separation times, achieving near-perfect purity (~100%), high yields, and negligible waste generation. Importantly, these benefits are achieved within a framework that prioritizes safety and environmental sustainability. These compelling findings underscore the effectiveness of this approach in converting vegetable oil into biodiesel, positioning it as a viable option for both research and practical applications.


Assuntos
Biocombustíveis , Óleos de Plantas , Óleos de Plantas/química , Esterificação , Hidróxidos/química , Azeite de Oliva/química , Ondas Ultrassônicas , Compostos de Potássio/química , Catálise
6.
Molecules ; 29(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731583

RESUMO

Xanthorrhizol, an important marker of Curcuma xanthorrhiza, has been recognized for its different pharmacological activities. A green strategy for selective xanthorrhizol extraction is required. Herein, natural deep eutectic solvents (NADESs) based on glucose and organic acids (lactic acid, malic acid, and citric acid) were screened for the extraction of xanthorrhizol from Curcuma xanthorrhiza. Ultrasound-assisted extraction using glucose/lactic acid (1:3) (GluLA) gave the best yield of xanthorrhizol. The response surface methodology with a Box-Behnken Design was used to optimize the interacting variables of water content, solid-to-liquid (S/L) ratio, and extraction to optimize the extraction. The optimum conditions of 30% water content in GluLA, 1/15 g/mL (S/L), and a 20 min extraction time yielded selective xanthorrhizol extraction (17.62 mg/g) over curcuminoids (6.64 mg/g). This study indicates the protective effect of GluLA and GluLA extracts against oxidation-induced DNA damage, which was comparable with those obtained for ethanol extract. In addition, the stability of the xanthorrhizol extract over 90 days was revealed when stored at -20 and 4 °C. The FTIR and NMR spectra confirmed the hydrogen bond formation in GluLA. Our study reported, for the first time, the feasibility of using glucose/lactic acid (1:3, 30% water v/v) for the sustainable extraction of xanthorrhizol.


Assuntos
Antioxidantes , Curcuma , Fenóis , Extratos Vegetais , Rizoma , Curcuma/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Rizoma/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Solventes Eutéticos Profundos/química , Ondas Ultrassônicas
7.
Acc Chem Res ; 57(9): 1384-1397, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38657038

RESUMO

ConspectusTechnologies for neuromodulation have rapidly developed in the past decade with a particular emphasis on creating noninvasive tools with high spatial and temporal precision. The existence of such tools is critical in the advancement of our understanding of neural circuitry and its influence on behavior and neurological disease. Existing technologies have employed various modalities, such as light, electrical, and magnetic fields, to interface with neural activity. While each method offers unique advantages, many struggle with modulating activity with high spatiotemporal precision without the need for invasive tools. One modality of interest for neuromodulation has been the use of mechanical force. Mechanical force encapsulates a broad range of techniques, ranging from mechanical waves delivered via focused ultrasound (FUS) to torque applied to the cell membrane.Mechanical force can be delivered to the tissue in two forms. The first form is the delivery of a mechanical force through focused ultrasound. Energy delivery facilitated by FUS has been the foundation for many neuromodulation techniques, owing to its precision and penetration depth. FUS possesses the potential to penetrate deeply (∼centimeters) into tissue while maintaining relatively precise spatial resolution, although there exists a trade-off between the penetration depth and spatial resolution. FUS may work synergistically with ultrasound-responsive nanotransducers or devices to produce a secondary energy, such as light, heat, or an electric field, in the target region. This layered technology, first enabled by noninvasive FUS, overcomes the need for bulky invasive implants and also often improves the spatiotemporal precision of light, heat, electrical fields, or other techniques alone. Conversely, the second form of mechanical force modulation is the generation of mechanical force from other modalities, such as light or magnetic fields, for neuromodulation via mechanosensitive proteins. This approach localizes the mechanical force at the cellular level, enhancing the precision of the original energy delivery. Direct interaction of mechanical force with tissue presents translational potential in its ability to interface with endogenous mechanosensitive proteins without the need for transgenes.In this Account, we categorize force-mediated neuromodulation into two categories: 1) methods where mechanical force is the primary stimulus and 2) methods where mechanical force is generated as a secondary stimulus in response to other modalities. We summarize the general design principles and current progress of each respective approach. We identify the key advantages of the limitations of each technology, particularly noting features in spatiotemporal precision, the need for transgene delivery, and the potential outlook. Finally, we highlight recent technologies that leverage mechanical force for enhanced spatiotemporal precision and advanced applications.


Assuntos
Ondas Ultrassônicas , Humanos , Animais
8.
Med Phys ; 51(5): 3220-3244, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38597908

RESUMO

Physiological and pathological changes in tissues often cause changes in tissue mechanical properties, making tissue elastography an effective modality in medical imaging. Among the existing elastography methods, ultrasound elastography is of great interest due to the inherent advantages of ultrasound imaging technology, such as low cost, portability, safety, and wide availability. However, most current ultrasound elastography methods are based on the bulk shear wave; they can image deep tissues but cannot image superficial tissues. To address this challenge, ultrasonic elastography methods based on surface acoustic waves have been proposed. In this paper, we present a comprehensive review of ultrasound-based surface acoustic wave elastography techniques, including their theoretical foundations, technical implementations, and existing medical applications. The goal is to provide a concise summary of the state-of-the-art of this field, hoping to offer a reliable reference for the further development of these techniques and foster the expansion of their medical applications.


Assuntos
Técnicas de Imagem por Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Humanos , Ondas Ultrassônicas , Modelos Teóricos
9.
Ultrason Sonochem ; 105: 106870, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579570

RESUMO

The obtained seeds from fruit processing are considered by-products containing proteins that could be utilized as ingredients in food manufacturing. However, in the specific case of soursop seeds, their usage for the preparation of protein isolates is limited. In this investigation a protein isolate from soursop seeds (SSPI) was obtained by alkaline extraction and isoelectric precipitation methods. The SSPI was sonicated at 200, 400 and 600 W during 15 and 30 min and its effect on the physicochemical, functional, biochemical, and structural properties was evaluated. Ultrasound increased (p < 0.05) up to 5 % protein content, 261 % protein solubility, 60.7 % foaming capacity, 30.2 % foaming stability, 86 % emulsifying activity index, 4.1 % emulsifying stability index, 85.4 % in vitro protein digestibility, 423.4 % albumin content, 83 % total sulfhydryl content, 316 % free sulfhydryl content, 236 % α-helix, 46 % ß-sheet, and 43 % ß-turn of SSPI, in comparison with the control treatment without ultrasound. Furthermore, ultrasound decreased (p < 0.05) up to 50 % particle size, 37 % molecular flexibility, 68 % surface hydrophobicity, 41 % intrinsic florescence spectrum, and 60 % random coil content. Scanning electron microscopy analysis revealed smooth structures of the SSPI with molecular weights ranging from 12 kDa to 65 kDa. The increase of albumins content in the SSPI by ultrasound was highly correlated (r = 0.962; p < 0.01) with the protein solubility. Improving the physicochemical, functional, biochemical and structural properties of SSPI by ultrasound could contribute to its utilization as ingredient in food industry.


Assuntos
Annona , Proteínas de Plantas , Sementes , Solubilidade , Sementes/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Annona/química , Ondas Ultrassônicas , Fenômenos Químicos , Sonicação
10.
Ultrason Sonochem ; 105: 106868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581798

RESUMO

The use of extracts rich in bioactive compounds is becoming increasingly common in the food, cosmetics, and pharmaceutical industries for the production of functional products. Araticum is a potential fruit to be analyzed due to its content of phenolic compounds, carotenoids and vitamins, with antioxidant properties. Therefore, this study aimed to investigate the effect of ultrasound on total phenolic compounds, total carotenoids, ascorbic acid, color, turbidity and rheology in araticum juice. Response surface methodology based on a central composite design was applied. Araticum juice was subjected to sonication at amplitude levels ranging from 20 to 100 % of the total power (400 W) at a constant frequency of 20 kHz for different durations (2 to 10 min). Morphological analysis was conducted to observe microscopic particles, and viscosity and suitability to rheological models (Newtonian, Power Law, and Herschel-Bulkley) were assessed. The ultrasonic probe extraction method was compared to the control juice. According to the responses, using the desirability function, the optimal conditions for extraction were determined to be low power (low amplitude) applied in a short period of time or low power applied in a prolonged time. These conditions allowed an ultrasonic probe to act on releasing bioactive compounds without degrading them. All three rheological models were suitable, with the Power Law model being the most appropriate, exhibiting non-Newtonian pseudoplastic behavior.


Assuntos
Reologia , Annona/química , Sucos de Frutas e Vegetais/análise , Carotenoides/química , Viscosidade , Ondas Ultrassônicas , Sonicação , Fenóis/química , Ácido Ascórbico/química
11.
Ultrason Sonochem ; 105: 106864, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581796

RESUMO

The effects of ultrasound and different inulin (INU) concentrations (0, 10, 20, 30, and 40 mg/mL) on the structural and functional properties of soybean isolate protein (SPI)-INU complexes were hereby investigated. Fourier transform infrared spectroscopy showed that SPI was bound to INU via hydrogen bonding. All samples showed a decreasing and then increasing trend of α-helix content with increasing INU concentration. SPI-INU complexes by ultrasound with an INU concentration of 20 mg/mL (U-2) had the lowest content of α-helix, the highest content of random coils and the greatest flexibility, indicating the proteins were most tightly bound to INU in U-2. Both UV spectroscopy and intrinsic fluorescence spectroscopy indicated that it was hydrophobic interactions between INU and SPI. The addition of INU prevented the exposure of tryptophan and tyrosine residues to form a more compact tertiary structure compared to SPI alone, and ultrasound caused further unfolding of the structure of SPI. This indicated that the combined effect of ultrasound and INU concentration significantly altered the tertiary structure of SPI. SDS-PAGE and Native-PAGE displayed the formation of complexes through non-covalent interactions between SPI and INU. The ζ-potential and particle size of U-2 were minimized to as low as -34.94 mV and 110 nm, respectively. Additionally, the flexibility, free sulfhydryl groups, solubility, emulsifying and foaming properties of the samples were improved, with the best results for U-2, respectively 0.25, 3.51 µmoL/g, 55.51 %, 269.91 %, 25.90 %, 137.66 % and 136.33 %. Overall, this work provides a theoretical basis for improving the functional properties of plant proteins.


Assuntos
Inulina , Proteínas de Soja , Inulina/química , Proteínas de Soja/química , Ondas Ultrassônicas , Glycine max/química , Sonicação
12.
ACS Appl Mater Interfaces ; 16(17): 21509-21521, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642038

RESUMO

In this study, we synthesized levan shell hydrophobic silica nanoclusters encapsulating doxorubicin (L-HSi-Dox) and evaluated their potential as ultrasound-responsive drug delivery systems for cancer treatment. L-HSi-Dox nanoclusters were successfully fabricated by integrating a hydrophobic silica nanoparticle-doxorubicin complex as the core and an amphiphilic levan carbohydrate polymer as the shell by using an electrospray technique. Characterization analyses confirmed the stability, size, and composition of the nanoclusters. In particular, the nanoclusters exhibited a controlled release of Dox under aqueous conditions, demonstrating their potential as efficient drug carriers. The levanic groups of the nanoclusters enhanced the targeted delivery of Dox to specific cancer cells. Furthermore, the synergism between the nanoclusters and ultrasound effectively reduced cell viability and induced cell death, particularly in the GLUT5-overexpressing MDA-MB-231 cells. In a tumor xenograft mouse model, treatment with the nanoclusters and ultrasound significantly reduced the tumor volume and weight without affecting the body weight. Collectively, these results highlight the potential of the L-HSi-Dox nanoclusters and ultrasound as promising drug delivery systems with an enhanced therapeutic efficacy for biomedical applications.


Assuntos
Doxorrubicina , Frutanos , Doxorrubicina/química , Doxorrubicina/farmacologia , Humanos , Animais , Frutanos/química , Frutanos/farmacologia , Camundongos , Linhagem Celular Tumoral , Portadores de Fármacos/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Ondas Ultrassônicas , Camundongos Nus , Feminino , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Dióxido de Silício/química , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Food Chem ; 449: 139302, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608610

RESUMO

In this study, the effects of the thermal ultrasonic enzyme inactivation process on flavor enhancement in sea cucumber hydrolysates (SCHs) and its impact on the inactivation of neutral proteases (NPs) were investigated. The body wall of the sea cucumber was enzymatically hydrolyzed with NPs. On the one hand, the structure of NPs subjected to different enzyme inactivation methods was analyzed using ζ-potential, particle size, and Fourier transform infrared (FT-IR) spectroscopy. On the other hand, the microstructure and flavor changes of SCHs were examined through scanning electron microscopy, E-nose, and gas chromatography-ion mobility spectrometry (GC-IMS). The results indicated that thermal ultrasound treatment at 60 °C could greatly affect the structure of NPs, thereby achieving enzyme inactivation. Furthermore, this treatment generated more pleasant flavor compounds, such as pentanal and (E)-2-nonenal. Hence, thermal ultrasound treatment could serve as an alternative process to traditional heat inactivation of enzymes for improving the flavor of SCHs.


Assuntos
Temperatura Alta , Pepinos-do-Mar , Animais , Pepinos-do-Mar/química , Aromatizantes/química , Aromatizantes/metabolismo , Hidrolisados de Proteína/química , Paladar , Hidrólise , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Ondas Ultrassônicas
14.
Int J Biol Macromol ; 267(Pt 2): 131504, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604428

RESUMO

In this study, based on response surface optimization of ultrasound pre-treatment conditions for encapsulating lycopene, the corn starch-glycyrrhiza polysaccharide composite (US-CS-GP) was used to prepare a novel lycopene inclusion complex (US-CS-GP-Lyc). Ultrasound treatment (575 W, 25 kHz) at 35 °C for 25 min significantly enhanced the rheological and starch properties of US-CS-GP, facilitating the preparation of US-CS-GP-Lyc with an encapsulation efficiency of 76.12 ±â€¯1.76 %. In addition, the crystalline structure, thermal properties, and microstructure of the obtained lycopene inclusion complex were significantly improved and showed excellent antioxidant activity and storage stability. The US-CS-GP-Lyc exhibited a V-type crystal structure, enhanced lycopene loading capacity, and reduced crystalline regions due to increased amorphous regions, as well as superior thermal properties, including a lower maximum thermal decomposition rate and a higher maximum decomposition temperature. Furthermore, its smooth surface with dense pores provides enhanced space and protection for lycopene loading. Moreover, the US-CS-GP-Lyc displayed the highest DPPH scavenging rate (92.20 %) and enhanced stability under light and prolonged storage. These findings indicate that ultrasonic pretreatment can boost electrostatic forces and hydrogen bonding between corn starch and glycyrrhiza polysaccharide, enhance composite properties, and improve lycopene encapsulation, which may provide a scientific basis for the application of ultrasound technology in the refined processing of starch-polysaccharides composite products.


Assuntos
Licopeno , Polissacarídeos , Amido , Licopeno/química , Amido/química , Polissacarídeos/química , Zea mays/química , Antioxidantes/química , Reologia , Ondas Ultrassônicas , Carotenoides/química
15.
Int J Biol Macromol ; 267(Pt 2): 131557, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614171

RESUMO

In this study, emulsions stabilized by octenyl succinic anhydride-modified broken japonica rice starch (OSA-BJRS) were prepared at different ultrasonic power intensities for the delivery, controlled release, and improved bioavailability of quercetin. The OSA-BJRS emulsions ultrasonicated at 400 W exhibited the highest encapsulation efficiency (89.37 %) and loading efficiency (58.34 %) of quercetin, the smallest volume-average droplet diameter (0.51 µm) and polydispersity index (0.19), the highest absolute value of the ζ-potential (26.73 mV), and the highest apparent viscosity and viscoelasticity. The oxidation stability, storage stability, thermal stability, and salt ion stability of the emulsions were also notably improved by the ultrasonication treatment. In addition, the results of the simulated in vitro digestion demonstrated that the ultrasonicated OSA-BJRS emulsions had an enhanced quercetin delivery performance and could stably transport quercetin to the small intestine for digestion. The OSA-BJRS emulsion ultrasonicated at 400 W exhibited the highest cumulative release rate (95.91 %) and the highest bioavailability (30.48 %) of quercetin. This suggests that OSA-BJRS emulsions prepared by ultrasonication can be considered effective delivery systems for hydrophobic functional components.


Assuntos
Emulsões , Oryza , Quercetina , Amido , Emulsões/química , Quercetina/química , Quercetina/análogos & derivados , Oryza/química , Amido/química , Amido/análogos & derivados , Anidridos Succínicos/química , Ondas Ultrassônicas , Viscosidade , Liberação Controlada de Fármacos , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos
16.
Int J Mol Med ; 53(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38666537

RESUMO

Fibroblast growth factor (FGF)21 is a peptide hormone that improves mitochondrial function and energy metabolism, and the deficiency of its co­receptor ß­klotho (KLB) causes decreased FGF21 sensitivity. The present study examined whether the cardiac delivery of plasmids containing the KLB gene via ultrasound­targeted microbubble destruction (UTMD) enhances the efficacy of FGF21 against heart failure post­acute myocardial infarction (AMI). For this purpose, the levels of FGF21 in patients and rats with heart dysfunction post­infarction were determined using ELISA. Sprague­Dawley rats received the 3X UTMD­mediated delivery of KLB@cationic microbubbles (KLB@CMBs) 1 week following the induction of AMI. Echocardiography, histopathology and biochemical analysis were performed at 4 weeks following the induction of AMI. The results revealed that patients with heart failure post­infarction had higher serum FGF21 levels than the healthy controls. However, the downstream signal, KLB, but not α­klotho, was reduced in the heart tissues of rats with AMI. As was expected, treatment with FGF21 did not substantially attenuate heart remodeling post­infarction. It was found that decreased receptors KLB in the heart may result in the insensitivity to FGF21 treatment. In vivo, the UTMD technology­mediated delivery of KLB@CMBs to the heart significantly enhanced the effects of FGF21 administration on cardiac remodeling and mitochondrial dysfunction in the rats following infarction. The delivery of KLB to the heart by UTMD and the administration of FGF21 attenuated mitochondrial impairment and oxidative stress by activating nuclear factor erythroid 2­related factor 2 signals. On the whole, the present study demonstrates that the cardiac delivery of KLB significantly optimizes the cardioprotective effects of FGF21 therapy on adverse heart remodeling. UTMD appears a promising interdisciplinary approach with which to improve heart failure post­myocardial infarction.


Assuntos
Fatores de Crescimento de Fibroblastos , Proteínas Klotho , Microbolhas , Infarto do Miocárdio , Ratos Sprague-Dawley , Remodelação Ventricular , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Humanos , Masculino , Ratos , Remodelação Ventricular/efeitos dos fármacos , Feminino , Ondas Ultrassônicas , Miocárdio/metabolismo , Miocárdio/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia
17.
Ultrason Sonochem ; 105: 106873, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608436

RESUMO

Starting from the consideration of the structure of human milk fat globule (MFG), this study aimed to investigate the effects of ultrasonic treatment on milk fat globule membrane (MFGM) and soy lecithin (SL) complexes and their role in mimicking human MFG emulsions. Ultrasonic power significantly affected the structure of the MFGM-SL complex, further promoting the unfolding of the molecular structure of the protein, and then increased solubility and surface hydrophobicity. Furthermore, the microstructure of mimicking MFG emulsions without sonication was unevenly distributed, and the average droplet diameter was large. After ultrasonic treatment, the droplets of the emulsion were more uniformly dispersed, the particle size was smaller, and the emulsification properties and stability were improved to varying degrees. Especially when the ultrasonic power was 300 W, the mimicking MFG emulsion had the highest encapsulation rate and emulsion activity index and emulsion stability index were increased by 60.88 % and 117.74 %, respectively. From the microstructure, it was observed that the spherical droplets of the mimicking MFG emulsion after appropriate ultrasonic treatment remain well separated without obvious flocculation. This study can provide a reference for the screening of milk fat globules mimicking membrane materials and the further utilization and development of ultrasound in infant formula.


Assuntos
Emulsões , Glicolipídeos , Glicoproteínas , Lecitinas , Gotículas Lipídicas , Lecitinas/química , Glicolipídeos/química , Gotículas Lipídicas/química , Glicoproteínas/química , Glicoproteínas/análise , Humanos , Glycine max/química , Leite Humano/química , Fenômenos Químicos , Tamanho da Partícula , Ondas Ultrassônicas , Sonicação
18.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612693

RESUMO

Low-intensity pulsed ultrasound (LIPUS) is a form of ultrasound that utilizes low-intensity pulsed waves. Its effect on bones that heal by intramembranous ossification has not been sufficiently investigated. In this study, we examined LIPUS and the autologous bone, to determine their effect on the healing of the critical-size bone defect (CSBD) of the rat calvaria. The bone samples underwent histological, histomorphometric and immunohistochemical analyses. Both LIPUS and autologous bone promoted osteogenesis, leading to almost complete closure of the bone defect. On day 30, the bone volume was the highest in the autologous bone group (20.35%), followed by the LIPUS group (19.12%), and the lowest value was in the control group (5.11%). The autologous bone group exhibited the highest intensities of COX-2 (167.7 ± 1.1) and Osx (177.1 ± 0.9) expression on day 30. In the LIPUS group, the highest intensity of COX-2 expression was found on day 7 (169.7 ±1.6) and day 15 (92.7 ± 2.2), while the highest Osx expression was on day 7 (131.9 ± 0.9). In conclusion, this study suggests that LIPUS could represent a viable alternative to autologous bone grafts in repairing bone defects that are ossified by intramembranous ossification.


Assuntos
Procedimentos de Cirurgia Plástica , Animais , Ratos , Ciclo-Oxigenase 2/genética , Regeneração Óssea , Osteogênese , Ondas Ultrassônicas
19.
Ultrason Sonochem ; 105: 106874, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615436

RESUMO

Vinegar is renowned for its benefits to human health due to the presence of antioxidants and bioactive components. Firstly, this study optimized the production conditions of ultrasound-treated strawberry vinegar (UT-SV), known for its high consumer appeal. The sensory properties of UT-SV were optimized by response surface methodology (RSM) to create the most appreciated strawberry vinegar. Secondly, various quality parameters of conventional strawberry vinegar (C-SV), UT-SV, and thermally pasteurized strawberry vinegar (P-SV) samples were compared. RSM was employed to craft the best strawberry vinegar based on consumers ratings of UT-SV. Sensory characteristics, bioactive values, phenolic contents, and organic acid contents of C-SV, UT-SV, and P-SV samples were assessed. Through optimization, the ultrasound parameters of the independent variables were determined as 5.3 min and 65.5 % amplitude. The RSM modeling levels exhibited high agreement with pungent sensation at 98.06 %, aromatic intensity at 98.98 %, gustatory impression at 99.17 %, and general appreciation at 99.26 %, respectively. Bioactive components in UT-SV samples increased after ultrasound treatment compared to C-SV and P-SV samples. Additionally, the amount of malic acid, lactic acid, and oxalic acid increased after ultrasound treatment compared to C-SV samples. Ultimately, UT-SV with high organoleptic properties was achieved. The ultrasound treatment positively impacted the bioactive values, phenolic and organic acid content, leading to the development of a new and healthy product.


Assuntos
Ácido Acético , Fragaria , Fragaria/química , Ácido Acético/química , Ácido Acético/análise , Ondas Ultrassônicas , Paladar , Fenóis/análise
20.
Med Eng Phys ; 126: 104129, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38621834

RESUMO

3D printed Poly Lactic Acid (PLA) bone plates exhibit limited three-point bending strength, restricting their viability in biomedical applications. The application of polydopamine (PDM) enhances the three-point bending strength by undergoing covalent interactions with PLA molecular structure. However, the heavy nature of PDM particles leads to settling at the container base at higher coating solution concentrations. This study investigates the impact of ultrasonic-assisted coating parameters on the three-point bending strength. Utilizing Response Surface Methodology (RSM) for statistical modeling, the study examines the influence of ultrasonic vibration power (UP), coating solution concentration (CC), and submersion time (TIME). RSM optimization recommended 100 % UP, 6 mg/ml CC, and 150 min TIME, resulting in maximum three-point bending strength of 83.295 MPa. Microscopic images from the comparative analysis revealed non-uniform coating deposition with mean thickness of 6.153 µm under normal coating. In contrast, ultrasonic-assisted coating promoted uniform deposition with mean thickness of 18.05 µm. The results demonstrate that ultrasonic-assisted coating induces PDM particle collision, preventing settling at the container base, and enhances three-point bending strength by 7.27 % to 23.24 % compared to the normal coating condition. This study emphasizes on the potential of ultrasonic-assisted coating to overcome the limitations of direct immersion coating technique.


Assuntos
Placas Ósseas , Ultrassom , Poliésteres/química , Ondas Ultrassônicas , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...